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ON GENERALIZED COUNTABLY APPROXIMATING
POSETS

Jinbo Yang* and Min Liu**

Abstract. As a generalization of countably approximating posets,
we introduce the concept of generalized countably approximating
posets. Some properties of generalized countably approximating
posets are presented.

1. Introduction

The theory of continuous lattices, due to their strong connections
to computer science, general topology and topological algebra have at-
tracted extensive attention (see [3]). One of the important directions
in the study of continuous lattices is to carry the theory of continuous
lattices to that of posets as much as possible.

In the earlier studies, the notion of continuous posets has proved to
be an important generalization of the notion of continuous lattices (see
[5]). Another important generalization of continuous lattices is so-called
generalized continuous lattices (GCL, for short); they were introduced
by Gierz and Lawson in [1, 4] and were called quasicontinuous lattices in
[3]. The basic idea is to generalize the way below relation on a complete
lattice L to that on the set of subsets of L. As a common generalization
of continuous posets and generalized continuous lattices, Gierz, Law-
son and Stralka introduced quasicontinuous posets in [2]. Venugopalan
studied basic algebraic properties of quasicontinuous posets in [8].
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In 1988, Lee [7] gave the definition of countably way-below relations
on a complete lattice, introduced the concept of countably approximat-
ing lattices which generalize continuous lattices, and showed that this
new larger class enjoyed almost all properties of continuous lattices. In
[5], Han, Hong, Lee and Park introduced another class of posets which
generalizes countably approximating lattices and continuous posets and
studied their properties.

In this paper, we introduce generalized countably approximating posets
as a generalization of countably approximating posets by generalizing
the countably way below relation on a poset P to that on the set of sub-
sets of P . We prove that the image of a generalized countably approx-
imating poset under an idempotent countably directed join-preserving
mapping is a generalized countably approximating poset and give some
characterizations of generalized countably approximating posets by the
σc-topology.

2. Generalized countably approximating posets

Throughout this paper, a partially ordered set is called a poset and P
will always mean a poset. A directed complete poset is called a dcpo for
short. For a set X, let X(<ω) = {F ⊆ X : F is finite}. A map f : P → P
is called idempotent if f2 = f . For terminology not introduced in the
paper, we refer to [3].

Definition 2.1. ([5, 7]) Let P be a poset and D a subset of P .
(1) D is countably directed if every countable subset of D has an

upper bound in D.
(2) For any x, y ∈ P , we say that x is countably way below y, in

symbols x ¿c y provided for each countably directed subset D of P with
y ≤ ∨

D, one has x ≤ d for some d ∈ D.
(3) A poset with countably directed joins is said to be countably

approximating if for all x ∈ P , ↓cx = {y ∈ P : y ¿c x} is countably
directed and x =

∨ ↓cx.

Recall the definition of quasicontinuous posets. Let P be a poset.
We say that a nonempty family F of subsets of P is directed if given
F1, F2 ∈ F , there exists a non-empty F ∈ F such that F ⊆↑ F1∩ ↑ F2.
We define way below relation ¿ on the set of subsets of P as follows:
A ¿ B iff for every directed set D ⊆ P ,

∨
D ∈↑ B implies D∩ ↑ A 6=

∅. A dcpo P is called quasicontinuous iff for each x ∈ P , the family
fin(x)={F ∈ P (<ω) : F ¿ x} is directed and ↑ x =

⋂{↑ F : F ∈
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fin(x)}. A poset P is called a quasicontinuous lattice if it is a complete
lattice and a quasicontinuous poset.

Definition 2.2. Let P be a poset. We say a nonempty family F
of subsets of P is countably directed if for any sequence (Fi)i∈Z+ in F ,
there exists F ∈ F such that F ⊆ ⋂

i∈Z+
↑ Fi.

Definition 2.3. Let P be poset and F,G ⊆ P . We say F is count-
ably way below G and write F ¿c G if for every countably directed set
D ⊆ P ,

∨
D ∈↑ G implies D∩ ↑ F 6= ∅. We write F ¿c x for F ¿c {x}.

Definition 2.4. A poset P with countably directed joins is called
a generalized countably approximating poset if P satisfies the following
conditions:

(1) For each x ∈ P , the family w(x) = {F ∈ P (<ω) : F ¿c x} is
countably directed;

(2) For each x ∈ P , ↑ x =
⋂{↑ F : F ∈ w(x)}.

The following are immediate and we omit the proof.

Proposition 2.5. Let P be a poset, then one has:

(1) If F ¿c G, then G ⊆↑ F .
(2) If F ¿c G, G′ ⊆↑ G, F ⊆↑ F ′, then F ′ ¿c G′.
(3) If P is a dcpo, then F ¿ G implies F ¿c G.
(4) If P has countable joins and (Fi)i∈Z+ is a sequence in w(x), then

F ¿c x and F ⊆ ⋂
i∈Z+

↑ Fi, where F = {∨i∈Z+
xi : xi ∈ Fi}.

Lemma 2.6 (Rudin’s Lemma). Let F be a directed family of nonempty
finite subsets of a poset P . Then there exists a directed set D ⊆ ⋃

F∈F F
such that D ∩ F 6= ∅ for all F ∈ F .

The following lemma is crucial in the study of generalized countably
approximating posets, and its proof is similar to that of Rudin’s Lemma.

Lemma 2.7. Let F be a countably directed family of nonempty finite
subsets of a poset P . Then there exists a countably directed set D ⊆⋃

F∈F F such that D ∩ F 6= ∅ for all F ∈ F .

Using the above lemma, we have the following corollary.

Corollary 2.8. Let F be a countably directed family of nonempty
finite subsets of a poset P with countably directed joins. If G ¿c H
and

⋂
F∈F ↑ F ⊆↑ H, then F ⊆↑ G for some F ∈ F .



418 Jinbo Yang and Min Liu

Lemma 2.9. Let P be a poset and F a countably directed family of
nonempty finite subsets of P . If f : P → P is a monotone map and x ∈⋂

F∈F ↑ f(F ), then there exists a countably directed set D ⊆ ⋃
F∈F F

such that x ∈ ⋂
d∈D ↑ f(d) and D ∩ F 6= ∅ for all F ∈ F .

Proof. Consider the collection A consisting of all E ⊆ ⋃
F∈F F such

that (i) x ∈ ⋂
e∈E ↑ f(e); (ii) E ∩ F 6= ∅ for all F ∈ F , and (iii)

F,G ∈ F and G ⊆↑ F implies E ∩ G ⊆↑ (E ∩ F ). Clearly A is not
empty, because B = {y ∈ ⋃

F∈F F : f(y) ≤ x} ∈ A. Order the elements
in A by inclusion. By the Hausdorff Maximality Principle, there exists a
maximal C ⊆ A. Let D =

⋂
C∈C C. Clearly D satisfies (i). That D meets

each F follows from the finiteness of F . The finiteness of members of F
also yields that D satisfies (iii). Now we prove that there exists F ∈ F
such that F ∩D ⊆↑ y for all y ∈ D. Suppose that some y0 ∈ D has the
property (F ∩D)\ ↑ y0 6= ∅ for all F ∈ F . Then one can verify directly
that D\ ↑ y0 again satisfies (i), (ii) and (iii), contradicting the minimality
of D. Let (zi)i∈Z+ be a sequence in D. Then there exists Fxi ∈ F such
that (Fxi ∩D) ⊆↑ xi for all x ∈ Z+. Since F is countably directed, there
exists F ∈ F such that F ⊆ ⋂

i∈Z+
↑ Fxi . For all i ∈ Z+, since F ⊆↑ Fxi ,

D∩F ⊆↑ (D∩Fxi). Then ∅ 6= D∩F ⊆ ⋂
i∈Z+

↑ (Fxi∩D) ⊆ ⋂
i∈Z+

↑ xi.
This shows that D is countably directed and the proof of the lemma is
complete.

Lemma 2.10. Let P be a poset with countably directed joins and F a
countably directed family of nonempty finite subsets of P . If f : P → P
preserves countably directed joins, then

⋂{↑ f(F ) : F ∈ F} =↑ f(
⋂{↑

F : F ∈ F}).
Proof. Trivially ↑ f(

⋂{↑ F : F ∈ F}) ⊆ ⋂{↑ f(F ) : F ∈ F}.
Suppose x ∈ ⋂{↑ f(F ) : F ∈ F}. By Lemma 2.9, there exists a
countably directed set D ⊆ ⋃

F∈F F such that x ∈ ⋂
d∈D ↑ f(d) and

D ∩ F 6= ∅ for all F ∈ F . Let y =
∨

D. Then
⋂

d∈D ↑ d =↑ y and
y ∈ ⋂

F∈F ↑ F . Since f preserves countably directed joins, f(y) =
f(

∨
D) =

∨
f(D) ≤ x. Thus x ∈↑ f(

⋂{↑ F : F ∈ F}).
Lemma 2.11. Let P be a poset with countably directed joins. Then

P is a generalized countably approximating poset if and only if for each
x ∈ P there exists a countably directed family F of nonempty finite
subsets of P such that F ⊆ w(x) and

⋂
F∈F ↑ F =↑ x.

Proof. We need only prove the sufficiency. Let F be a countably
directed family of nonempty finite subsets of P with F ⊆ w(x) and⋂

F∈F ↑ F =↑ x. Then ↑ x ⊆ ⋂
F∈w(x) ↑ F ⊆ ⋂

F∈F ↑ F =↑ x.
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Thus
⋂

F∈w(x) ↑ F =↑ x. Let (Gi)i∈Z+ be a sequence in w(x). Since⋂
F∈F ↑ F =↑ x, it follow from Corollary 2.8 that there exists Fi ∈ F

such that Fi ⊆↑ Gi for all i ∈ Z+. Since F is countably directed, there
exists F ∈ F such that F ⊆ ⋂

i∈Z+
↑ Fi. Then F ⊆ ⋂

i∈Z+
↑ Gi. Since

F ⊆ w(x), F ∈ w(x). Therefore w(x) is countably directed.

Remark 2.12. Since
∨ ↓cx = x if and only if ↑ x =

⋂{↑ y : y ∈ ↓cx},
countably approximating posets are generalized countably approximat-
ing posets.

Theorem 2.13. Let P be a generalized countably approximating
poset and f : P → P be an idempotent self map and f preserves
countably directed joins. Then the subposet f(P ) is again a general-
ized countably approximating poset.

Proof. Let Q = f(P ). It is straightforward to verify that Q has
countably directed joins and for any countably directed subset D of
Q,

∨
P D =

∨
Q D. Let x ∈ Q. Since P is a generalized countably

approximating poset, wP (x) = {F ∈ P (<ω) : F ¿c x} is countably
directed and

⋂
F∈wP (x) ↑ F =↑ x. Let F = {f(F ) : F ∈ wP (x)}. Then

F is a countably directed family of nonempty finite subset of Q. Now we
prove that F ⊆ wQ(x) = {G ∈ Q(<ω) : G ¿c x}. Let D be a countably
directed subset of Q with x ≤ ∨

Q D =
∨

P D. Then ↑ F ∩ D 6= ∅ for
each F ∈ wP (x). Thus ↑ f(F ) ∩D 6= ∅. Therefore f(F ) ¿c x in Q for
all F ∈ wP (x).

By Lemma 2.10,
⋂

H∈F ↑Q H =
⋂{↑Q f(F ) : F ∈ wP (x)} =↑Q

f(
⋂{↑P F : F ∈ wP (x)}) =↑Q f(↑P x) =↑Q f(x) =↑Q x. It follows from

Lemma 2.11 that Q = f(P ) is a generalized countably approximating
poset.

Corollary 2.14. Let P be a generalized countably approximating
poset and if g : P → P has lower adjoint and g is idempotent, then g(P )
is a generalized countably approximating poset.

Proof. Let h be the lower adjoint of g. Then h is idempotent and h
preserves all existing joins. Therefore by Theorem 2.13, h(P ) is a gen-
eralized countably approximating poset. Since g(P ) is order isomorphic
to h(P ) , g(P ) is a generalized countably approximating poset.

Corollary 2.15. Let P be a generalized countably approximating
poset. If g : P → Q is surjective, preserves countably directed joins and
has a lower adjoint. Then Q is a generalized countably approximating
poset.
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Proof. Let h be the lower adjoint of g. Then f = h ◦ g preserves
countably directed joins and f2 = f . By Theorem 2.13, f(P ) = hg(P ) =
h(Q) is a generalized approximating poset. Since Q = g(P ) is order
isomorphic to h(Q), Q is a generalized countably approximating poset.

Corollary 2.16. Let P be a generalized countably approximating
poset and Q a poset with countably directed joins. If r : P → Q,
s : Q → P preserve countably directed joins and r ◦ s = idQ, then Q is
a generalized countably approximating poset.

Proof. Let f = s ◦ r. Then f2 = f and f preserves countably di-
rected joins. By Theorem 2.13, f(P ) = s ◦ r(P ) = s(Q) is a generalized
countably approximating poset. Since Q and s(Q) are order isomorphic
posets, Q is a generalized countably approximating poset.

3. Topological properties of generalized countably approxi-
mating posets

In [5], the authors introduced σc-topology on a poset and charac-
terized countably approximating posets by their σc-topology. In this
section, we discuss the properties of σc-topology on generalized count-
ably approximating posets.

Recall the σc-topology on a poset P . Let σc(P ) = {U ⊆ P : U =↑
U and for any countably directed subset D of A with

∨
D ∈ U,D∩U 6=

∅}. Then σc(P ) is a topology on P , and we call σc(P ) the σ-Scott topol-
ogy on P .

Remark 3.1. ([5])(1) For any poset P , the Scott topology σ(P ) on
P is coarser than σc(P ), i.e., σ(P ) ⊆ σc(P ) and Gδ-sets in (P, σc(P ))
are open.

(2) A subset C of a poset P is closed in (P, σc(P )) iff C =↓ C and
C is closed under the formation of countably directed joins.

We now consider the interpolation property for generalized countably
approximating posets.

Proposition 3.2. Let P be a generalized countably approximating
posets. If H ¿c x, then there exists F ∈ P (<ω) such that H ¿c F ¿c x.

Proof. Consider the collection G = {G ∈ P (<ω) : there exists F ∈
P (<ω) such that G ¿c F ¿c x}. Now we prove the following.

(i)
⋂

G∈G ↑ G ⊆↑ x.
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If z 6∈↑ x, then there exists F ∈ w(x) such that z 6∈↑ F . For each
y ∈ F , we can pick Fy ∈ w(y) such that z 6∈↑ Fy. Set G =

⋃
y∈F Fy,

then G ∈ P (<ω). It is easy to verify that G ¿c F and z 6∈↑ G.
(ii) G is countably directed.
Suppose that Gi ∈ G, Gi ¿c Fi ¿c x for i ∈ Z+. Since P is

generalized countably approximating, there exists F ∈ w(x) such that
F ⊆ ⋂

i∈Z+
↑ Fi. Then Gi ¿c F for all i ∈ Z+. Thus Gi ¿c y for all

y ∈ F and i ∈ Z+. For all x ∈ F , ↑ y =
⋂{↑ F ′ : F ′ ∈ w(y)} since P

is generalized countably approximating. By Corollary 2.8, there exists
F ′

i ∈ w(y) such that Fy ⊆
⋂

i∈Z+
↑ F ′

i ⊆
⋂

i∈Z+
↑ Gi. Set E =

⋃
y∈F Fy.

Then E ¿c F ¿c x and E ⊆ ⋂
i∈Z+

↑ Gi.
Since H ¿c x and

⋂
G∈G ↑ G ⊆↑ x, by Corollary 2.8, there exists

G ∈ G such that G ⊆↑ H. Since G ¿c F ¿c x for some F ∈ P (<ω), we
conclude that H ¿c F ¿c x.

Proposition 3.3. Let P be a generalized countably approximating
poset.

(i) For any nonempty set H of P , intσc(P ) ↑ H =↑c (H), where ↑c

(H) = {x ∈ P : H ¿c x}.
(ii) For any U ⊆ P , U ∈ σc(P ) iff for each x ∈ U there exists a finite

F ¿c x such that ↑ F ⊆ U . The set {↑c (F ) : F ∈ P (<ω)} forms a
base for σc(P ).

Proof. (i) By Proposition 3.2, it is easy to verify that ↑c (H) ∈ σc(P )
by using the interpolation property. Since ↑c (H) ⊆↑ H, ↑c (H) ⊆
intσc(P ) ↑ H. On the other hand, for each x ∈ intσc(P ) ↑ H, ↑ H ¿c x,
and then H ¿c x. So x ∈↑c (H). Therefore intσc(P ) ↑ H ⊆↑c (H).

(ii) Let U ∈ σc(P ), x ∈ U . From the definition of σc(P ), U ¿c x.
So by Proposition 3.2, there exists F ∈ P (<ω) such that U ¿c F ¿c x.
Thus ↑ F ⊆ U . Conversely suppose that for each x ∈ U , there exists a
finite F ¿c x such that ↑ F ⊆ U . Then ↑ x ⊆ U , so U is an upper set.
Let D be a countably directed set such that x =

∨
D ∈ U . Then there

exists a finite F ¿c x =
∨

D such that ↑ F ⊆ U . Thus U ∩D 6= ∅. From
(i), ↑c (F ) ∈ σ(P ) for all F ∈ P (<ω). Thus the set {↑c (F ) : F ∈ P (<ω)}
forms a base for σc(P ).

Now we give the topological characterizations of generalized count-
ably approximating posets.

Theorem 3.4. Let P be a poset with countably directed joins. Then
the following conditions are equivalent:
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(1) P is a generalized countably approximating poset;

(2) For all x ∈ P and U ∈ σc(P ) with x ∈ U , there exists F ∈ P (<ω)

such that x ∈ intσc(P ) ↑ F ⊆↑ F ⊆ U ;
(3) (σc(P ), ⊆) is a hypercontinuous lattice.

Proof. (2) ⇔ (3) This follows from Lemma 2.2 of [9].
(1) ⇒ (2) This follows from Proposition 3.3.
(2) ⇒ (1) For all x ∈ P , let F = {F ∈ P (<ω) : x ∈ intσc(P ) ↑ F}.

Since P ∈ σc(P ), it follows from (2) that there exists F ∈ P (<ω) such
that x ∈ intσc(P ) ↑ F ⊆↑ F ⊆ P . Then F ∈ F 6= ∅. From the
definition of σc(P ), F ¿c x for all F ∈ F . Then F ⊆ w(x). Obviously
↑ x ⊆ ⋂

F∈F ↑ F . If x 6≤ y, then x ∈ P\ ↓ y ∈ σ(P ) ⊆ σc(P ). By
(2), there exists F ∈ P (<ω) such that x ∈ intσc(P ) ↑ F ⊆↑ F ⊆ P\ ↓ y.
Then F ∈ F and y 6∈↑ F . Thus ↑ x =

⋂
F∈F ↑ F . Now we prove

that F is countably directed. Let (Fi)i∈Z+ be a sequence in F . Since
Gδ-sets in (P, σc(P )) are open, x ∈ ⋂

i∈Z+
intσc(P ) ↑ Fi ∈ σc(P ). Also

from (2), there exists F ∈ P (<ω) such that x ∈ intσc(P ) ↑ F ⊆↑ F ⊆⋂
i∈Z+

intσc(P ) ↑ Fi. Therefore F ∈ F and F is countably directed.

Similarly, we have the following characterizations of countably ap-
proximating posets.

Theorem 3.5. Let P be a poset with countably directed joins. Then
the following conditions are equivalent:

(1) P is a countably approximating poset;
(2) For all x ∈ P and U ∈ σc(P ) with x ∈ U , there exists y ∈ P such

that x ∈ intσc(P ) ↑ y ⊆↑ y ⊆ U ;
(3) (σc(P ), ⊆) is a completely distributive lattice.

Proposition 3.6. Let P be a generalized countably approximating
poset. If Q is locally closed, i.e., an intersection of an open set and
a closed set in (P, σc(P )), then with respect to the order inherited
from P , Q is a generalized countably approximating poset. Furthermore
σc(P ) ∩Q = σc(Q).

Proof. First suppose that Q is closed in (P, σc(P )). Then since the
joins of a countably directed subset of Q will be again in Q, we have
that Q is a poset with countably directed joins.

For each x ∈ Q, let F = {F ∩ Q : F ∈ wP (x)}. Remembering Q is
closed and hence a lower set, one sees easily that F satisfies the condi-
tions in Lemma 2.11. Hence Q is a generalized countably approximating
poset.
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It is easy to prove that σc(P )∩Q ⊆ σc(Q). Conversely let U ∈ σc(Q)
and x ∈ U . By Theorem 3.4, there exists F ∈ Q(<ω), F ¿c x in Q and
F ⊆ U . By Corollary 2.8, there exists G ∈ P (<ω) such that G ¿c x of
P and G∩Q ⊆↑ F . Again by Theorem 3.4, ↑c (G) ∈ σc(P ), and we can
verify that x ∈↑c (G) ∩Q ⊆↑ G ∩Q ⊆↑ F ∩Q ⊆ U .

Now suppose that Q ∈ σc(P ). Then Q is an upper set and hence a
poset with countably directed joins (since P is). For each x ∈ Q, let
F = {F ∈ wP (x) : F ⊆ Q}. By Theorem 3.4, F 6= ∅. Then we can
check that the collections F satisfy the conditions in Lemma 2.11. Hence
Q is a generalized countably approximating poset. An easy verification
yields σc(P ) ∩Q = σc(Q).

Finally suppose Q = U ∩ C, where U is open and C is closed in
(P, σc(P )). Then C is a generalized countably approximating poset by
the first part of the proof. Since U ∩C is open in (C, σc(C)), then U ∩C
is a generalized countably approximating poset by the second part of the
proof.

From the above Proposition, we have the following corollary imme-
diately.

Corollary 3.7. Let P be a generalized countably approximating
poset and Q an open or closed subset in (P, σc(P )). Then with respect to
the order inherited from P , Q is a generalized countably approximating
poset.
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